Garisyang bersilangan dengan garis DE merupakan garis yang tidak sejajar dan tidak berpotongan. Pada gambar terlihat bahwa garis BC dan garis AC tidak sejajar dan tidak berpotongan dengan garis DE. Jadi, garis yang bersilangan dengan garis DE adalah garis BC dan garis AC.
Web server is down Error code 521 2023-06-15 001555 UTC Host Error What happened? The web server is not returning a connection. As a result, the web page is not displaying. What can I do? If you are a visitor of this website Please try again in a few minutes. If you are the owner of this website Contact your hosting provider letting them know your web server is not responding. Additional troubleshooting information. Cloudflare Ray ID 7d769f123c4c0e78 • Your IP • Performance & security by Cloudflare
Adatiga macam kedudukan garis pada bidang. Pertama, garis yang sejajar pada bidang. Kedua, garis yang berimpit pada bidang, dan yang ketiga garis yang memotong bidang. 5. Kedudukan Bidang pada Bidang Lainnya Sesama bidang pun ternyata juga saling memiliki kedudukan, lho! Pertama, ada yang namanya dua bidang sejajar.
Artikel Matematika kelas XII kali ini akan menjelaskan tentang kedudukan titik, garis, dan bidang pada bangun ruang. Ada 5 macam kedudukannya. Apa saja ya? Simak penjelasannya berikut! — Teman-teman, di bangku sekolah dasar, kita udah belajar materi tentang bangun ruang atau bangun dimensi tiga, ya. Masih ingat nggak? Coba kita ingat kembali ya. Seperti yang kita tau, bangun ruang itu terbagi menjadi dua. Ada bangun ruang sisi datar, seperti balok, kubus, prisma, dan limas, ada juga bangun ruang sisi melengkung, seperti tabung, kerucut, dan bola. Nah, pada bangun ruang, kita mengenal istilah titik, garis, dan bidang. Yep! Dasarnya, bangun ruang itu tersusun dari tiga elemen tersebut. Masing-masing elemen, tentu punya kedudukan atau posisi tertentu pada bangun ruang itu sendiri. Di artikel ini, kita akan membahas kedudukan titik, garis, dan bidang pada bangun ruang. Seperti apa aja, ya? Langsung kita simak yuk penjelasan lengkapnya berikut ini! Baca juga Mengenal Ilmu Tertua dalam Matematika Geometri! 1. Kedudukan Titik pada Garis Titik merupakan bagian terkecil dari objek geometri karena nggak memiliki ukuran tertentu, baik panjang, lebar, maupun tebal. Kedudukan titik pada garis terbagi menjadi dua macam, yaitu titik terletak pada garis dan titik nggak terletak pada garis. Nah, contohnya, bisa kamu lihat pada gambar di bawah ini, ya. 2. Kedudukan Titik pada Bidang Bidang sendiri merupakan gabungan lebih dari beberapa garis yang saling terhubung. Kedudukan titik pada bidang juga terbagi menjadi dua macam. Pertama, titik berada di dalam bidang dan kedua, titik berada di luar bidang. Contohnya seperti gambar berikut ini! 3. Kedudukan Garis pada Garis Lainnya Selanjutnya, kita bahas kedudukan garis. Garis merupakan himpunan atau kumpulan titik-titik yang mempunyai ukuran panjang. Antara satu garis dengan garis lainnya juga punya kedudukan. Ada empat macam kedudukannya. Di antaranya, dua garis yang saling berpotongan, dua garis yang sejajar, dua garis yang saling berhimpit, dan dua garis yang saling bersilangan. Garis yang berpotongan itu terletak di bidang yang sama, ya. Beda dengan garis bersilangan. Garis bersilangan ini garis yang terletak di bidang berbeda dan nggak punya titik persekutuan. 4. Kedudukan Garis pada Bidang Garis dan bidang juga bisa saling memiliki kedudukan satu dengan yang lainnya, ya. Ada tiga macam kedudukan garis pada bidang. Pertama, garis yang sejajar pada bidang. Kedua, garis yang berimpit pada bidang, dan yang ketiga garis yang memotong bidang. 5. Kedudukan Bidang pada Bidang Lainnya Sesama bidang pun ternyata juga saling memiliki kedudukan, lho! Pertama, ada yang namanya dua bidang sejajar. Artinya, dua bidang tersebut nggak punya titik atau garis persekutuan. Kedua, adalah dua bidang yang saling berimpit. Artinya, setiap titik di bidangnya itu ada di bidang satunya lainnya. Ketiga, adalah dua bidang yang saling berpotongan. Artinya, kedua bidang punya garis persekutuan. Nah, sekarang kamu sudah tau kan kalo ada lima macam kedudukan antara titik, garis, dan bidang pada bangun ruang. Supaya lebih paham dengan kedudukan-kedudukan tersebut, berikut ada contoh soal yang bisa kamu pakai untuk latihan. Baca Juga Memahami 6 Bentuk dan Menyelesaikan Persamaan Logaritma Latihan Soal Hmmm… kira-kira jawabannya yang mana, ya? Perlu kamu inget nih, bahwa dua garis itu dikatakan bersilangan jika dua garis tersebut nggak sebidang. Oke, perhatikan seksama yuk penjelasannya. Garis BD dan FH itu terletak di bidang yang sama, yaitu BDHF dan nggak punya titik persekutuan, jadi mereka nggak bersilangan. Kemudian, garis BD dan BF terletak pada bidang yang sama juga, yaitu bidang BDHF dan punya titik persekutuan di titik B. Jadi, kedua garis tersebut tidak bersilangan. Garis BD dan AC terletak pada bidang yang sama, yaitu bidang ABCD dan punya satu titik persekutuan di titik kedua garis tersebut berpotongan. Dengan kata lain, kedua garis tersebut nggak bersilangan. Kemudian, garis BD gan HB juga terletak pada bidang yang sama, yaitu bidang BDHF dan punya satu titik persekutuan di titik B, sehingga kedua garis tersebut nggak bersilangan. Dengan kata lain, garis yang bersilangan ialah garis BD dan EG. Yaps! Kedua garis tersebut kalau kamu perhatiin nggak berada di bidang yang sama. Garis BD berada di bidang ABCD, sedangkan garis EG berada di bidang EFGH, sehingga nggak punya titik persekutuan. Gimana soal latihannya? Sudah cukup belum? Kalo kamu masih mau penjelasan yang lebih lengkap dan menarik, ada lho di ruangbelajar yang penjelasannya pake animasi keren itu, lho! Belajar kamu dijamin makin seru dan mudah, deh. Gabung sekarang yuk di ruangbelajar! Sumber Referensi Wirodikromo S, Darmanto M, 2019 Matematika untuk SMA/MA Kelas XII kelompok Wajib. Jakarta Erlangga. Artike diperbarui 15 Juli 2021.
Jawabanyang benar adalah bersilangan Ingat konsep kedudukan dua garis bersilangan, dua garis dikatakan saling bersilangan apabila garis-garis tersebut tidak terletak pada satu bidang datar dan tidak akan berpotongan apabila diperpanjang.
Misalkansaja pada kasus jarak antara dua garis bersilangan sebagai berikut : Jarak EF ke AH Diketahui kubus seperti pada Gambar 1.1., ditanyakan jarak EF ke AH. Kebanyakan siswa mengira EA atau EH lah yang mewakili jarak antara EF ke AH, padahal dalam kasus ini EX adalah ruas garis yang dimaksud.
Bersilangan jika masing-masing garis berada pada bidang yang saling bersilangan tegak lurus; 4. Kedudukan garis terhadap bidang. Terletak pada bidang, jika seluruh garis berada pada bidang sehingga seluruh titik pada garis saling berhimpit dengan titik-titik pada bidang. Tidak ada jarak antara garis dan bidang.
. 190 423 86 141 413 289 179 302
garis bersilangan pada prisma segitiga